If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24^2+18^2=c^2
We move all terms to the left:
24^2+18^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+900=0
a = -1; b = 0; c = +900;
Δ = b2-4ac
Δ = 02-4·(-1)·900
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*-1}=\frac{-60}{-2} =+30 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*-1}=\frac{60}{-2} =-30 $
| -4+a/14=-3 | | x2—2x—35=0 | | 10*(1/2)x-3=97 | | 3*2x+7=43 | | 2*5x=300 | | 37+4x=180 | | b-6=100 | | b.)b-6=100 | | 8+4y+y=-2 | | 2^5x=300 | | 2x5x=300 | | 3x-3=7x+ | | x-2=-(x-x | | 53=-7-4r | | -200p^2+300p^2-80=0 | | 8x+7=14x+11 | | 26=16v-7v | | 3p+6=-2p+26 | | 9n-6=156 | | -200x3+300x2-80=0 | | 9n-6=15 | | 7+4x+3=26-4+4 | | 12=t/4-8 | | 4(2p+1)-12p=2(8p+12 | | X²-10=2x² | | 9p-5=85 | | u+4/9=2 | | 2x+51=8x-9 | | 3x-3=12+3 | | 0=-16t^2+10t+90 | | 8e+3(5-8)=10 | | 3x-3=12+3* |